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Abstract 

The effect on spreading dynamics induced by collective consensus is investigated in this paper, on the basis of epidemic model for 

spreading dynamics and phase synchronization model for collective consensus. The interaction between propagation and collective 

synchronization is explored by theoretical analysis and numerical simulation. We found that the spreading dynamics and 

synchronizations are highly affected with the increasing of coupling strength on sparse links between communities. With the level of 

collective consensus about awareness increasing, both oscillation amplitude and mean prevalence are suppressed, and the inter-

community coupling strength have great effect on time spent on reaching consensus. 
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1 Introduction 

 
In the real-world networks, there exists collective 

synchronization phenomenon almost everywhere, which 

has aroused wide concern recently and has been researched 

widely, and a population of coupled oscillators and a 

network model describing the link and interaction between 

individuals are applied to characterize this phenomeno-

logy. These two ingredients trigger various dynamic beha-

viours. In particular, the collective synchronization model-

led by epidemic process varies with the oscillator network. 

The earliest discussion of the periodic oscillations of epi-

demic model focuses on small-world networks [1]. They 

found that with the rewiring probability slowly increasing, 

the number of infected individuals will eventually reach a 

state of apparent periodic oscillations with the time series 

instead of fluctuating at a fixed point originally. By using 

a modified SIR model, the epidemic threshold pc for case 

of mean degree k=2 on small world networks has been 

investigated [2]. According to the above works, we can 

start our research about measuring the small-world effect 

from the perspective of the dynamics of system, beyond 

the limit of the topological analysing method. 

Recently, model of networks that consist of inter-

connected modules have been extensively investigated in 

collective synchronization research field. Yan and Fu 

propose a scale-free module network with adjustable 

community strength, to explore collective synchronization 

induced by the Susceptive-Infected-Recovery-Susceptive 

epidemic model [3]. They found that small module 

strength induces better global synchronization and there 

exists a critical point where phase transition occurs. Using 

the same module network model, effects of community 
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structure on the phase synchronization has been inves-

tigated for Kuramoto model [4]. They found that there 

exist a solution region, in which system have worse syn-

chronization than isolated community graphs. In reference 

[5], the author used the Susceptive-Infected-Recovery-

Susceptive (SIRS) epidemic model to figure out the in-

fluence of community structure on the temporal dynamics 

of the epidemic spreading, and the order parameter was 

introduced to demonstrate the synchronization and related 

to the phase of nodes at the present time. After the study, 

they found that small community structure induces better 

synchronization and there exists a critical point where a 

phase transition occurs. 

The above theoretic research convincingly demon-

strates the relationship between community structure and 

collective synchronization. However, other factor like the 

human collective behavior, such as leaving the prevalence 

area, awareness mechanism, also plays an important role 

in the spreading dynamics, and the correlational research 

is lacking. In the real world, when an infectious disease 

breaks out, people will take some safeguard measures to 

reduce the risk of being infected sooner or later. When the 

majority of people’s awareness is formed, the epidemic 

spreading will be greatly blocked and the collective 

synchronization induced by it may be influenced similarly. 

How the awareness mechanism works in the synchro-

nization phenomena is what we want to explore. The 

authors in reference [6] researched the interplay between 

awareness and epidemic dynamics by a continuous mean-

field (MF) model. They started their work from three 

perspectives: local awareness, global awareness and 

contact awareness. The individual awareness influences 

the epidemic spreading by influencing the admission rate, 
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and the larger the admission rate is, the weaker the 

individual is, and then it is easier for it to be infected. For 

node i, the author used a specific function to denote its 

admission rate, which involves the total number of infected 

individuals. However, we find that it is always hard to 

acquire the total number of infected individuals in the part 

of global awareness immediately and precisely though the 

number of infected neighbours can be acquired sponta-

neously. Therefore, we searched for much literature and 

found that the research on consensus and phase synchro-

nization in reference [7, 8] is suitable to be applied to solve 

the above problem. 

In reference [8], based on the famous Kuramoto model 

and the general framework proposed in the author’s 

previous research, a set of three differential equations was 

proposed to build a dynamics system, which denotes the 

changes of an individual’s phase, the epidemic prevalence 

and the coupling strength of the network structure. The 

synchronization was measured by the phase synchroni-

zation error, i.e., the consensus. At the outbreak of some 

disease, people can meet a consensus about the severity of 

the disease by communicating online or other means, so 

the global data needn’t be acquired which may not be 

precise even if it is acquired immediately. After research, 

they found that the effect of network structure on the 

spreading process while to enhance the awareness to 

collective behaviour is an effective method to control the 

epidemic spreading. 

In reference [9-11], a novel control method to improve 

the system synchronization are applied to research field of 

power grid, consensus networks. The outperforming of 

system can be achieved by sparse wide-area control, just 

like the centralized control, while with lower commu-

nication cost. Inspired by the idea of sparse inter-area 

control, we try to answer the following questions with our 

work: how the sparse links between communities affect the 

collective synchronization with scale and speed, and the 

subsequent interaction between spreading dynamics and 

collective phase synchronization is or not affected by the 

module structure, which mean the structure with dense 

links in community and sparse links between communities. 

In this paper we investigate the interplay of phase 

synchronization and epidemic-modeled dynamics in mo-

dular networks. The considered modular networks consist 

of densely connected modules, each with the Scale-Free 

network structure. 

 

2 Model 

 

Many real networks have some common properties, for 

example, the small-world, scale-free and clustering pro-

perties. Scale-free means that there are some nodes with 

very large degrees, act as hubs in the whole graph. And this 

feature was not gathered by the basic ER random graphs. 

To generate scale-free graphs, there are several models in 

theoretical study. Yan proposed a growth model as follows 

[3]: starts from n community cores; each core contains m0 

fully connected nodes. Initially, there are no connections 

among different community cores. At each time step, to 

each community core, one node is added. Thus, there are 

in total n new nodes being added in one time step. Each 

node will attach m edges to existing nodes within the same 

community core, and simultaneously m-n edges to existing 

nodes outside this community core. As results, the algo-

rithm creates a network with adjustable ratio of edges 

intra-community to the total edges, together with a degree 

distribution following a power-law by constantly adding 

new nodes. The definition of the community strength, as 

follows: 

2
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  
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   
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where c is the number of the modules, L is the overall total 

number of edges, ls is the total number of edges in the 

module, ds is cumulative sum for the node degree within 

the module. 

The main purpose of most research done in complex 

network is to figure out systems built on networks and the 

interaction between the structure of the network and the 

evolution of the system. These systems can be shown using 

dynamical processes taking place on networks. And in this 

paper, we use Kuramoto model to describe the behavior of 

the oscillators. Kuramoto model, a fully nonlinear model 

used to describe synchronization, has the following 

governing Equation: 

(t) sin( )i i ij i j

j

a       , (2) 

where the parameter ρ determines the coupling strength, aij 

is the adjacency matrix, θi is the phase of oscillator, ωi 

denotes intrinsic natural frequency of oscillator i, N is the 

number of whole population. The simulation are per-

formed under the assumption that the random variable θi 

and ωi are uniformly distributed in [0,2π] and [-0.5, 0.5], 

respectively. The nature frequencies in each node induce 

oscillators, while the coupling strength always synchro-

nize the phase of the system. When the coupling strength 

overcome the centrifugal force induced by nature fre-

quency, the synchronized order parameter increases. To 

quantify the synchronized states we use the relevant order 

parameter: 
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Focusing on the purpose to explore the effect of sparse 

control on inter-community links, we build our phase syn-

chrony model based on Kuramoto model. The phase dyna-

mics of the system with time-varying intra-community 

coupling strength β(t) and time-varying inter-community 

coupling strength α(t). 
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where m denotes the community number of node i, β is the 

coupling strength intra-community, Nc is the population 

number of each community, N=Nc×C, αnm is the inter-

community coupling strength between community m and 

n. p ∈(0,1) is a magnifying parameter. 

0( ) 1 (1 ( ))m mt I t    , (5) 

where β0∈ [0,1] is a constant parameter, Im(t) is the 

proportion of infected individuals in the population of 

community m. The intra-community coupling strength in 

community m is βm(t) ∈[1-β0,1], and varying with Im(t). 

The assumption shown by Equation (5) is as follows: in a 

community with dense links, individuals are easy to obtain 

the data of epidemic prevalence in its own community and 

change their intra-community coupling strength according 

to the severity of the epidemic outbreak. For example, 

when an infectious disease breaks out, individuals in same 

groups will reach consensus more urgently, when the 

epidemic prevalence level is high. At the same time, the 

intra-community coupling strength should always exist 

even the epidemic prevalence level is very low. 

1
( ) 1
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ji

mn

j m nc

t e
N
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The assumption shown by Equation (6) is as follows: 

the change rate of inter-community coupling strength on 

the sparse links between two communities is negative 

relate to the level of collective synchronization in these 

two communities. That means, when individuals found the 

phase error between their own community and neighbor 

community is increasing, then the coupling strength will 

increase to suppress the gap between two communities. 

This phenomenon widely exists in the real world. 

The spreading dynamics are modeled in our work by 

epidemic SIRS model, and the effect of consensus is 

denoted as the vulnerability of the nodes in graph. That 

means, with a high level of phase synchronization, which 

means high level of consensus, then high level of protect 

measure will be adopted. This assumption is based on the 

epidemic model, while effect of consensus is not neces-

sarily negative on information spreading. 

( ) ( ) ( ) ( ) ( )kS t t S t I t R t    , (7) 

where λ is the contact rate for spreading, ψ is the 

vulnerability of the node with degree k,   is the immune-

failure rate for epidemic SIRS models, Tr=1/μ. 

( ) ( ) ( ) ( ) ( )I t t S t I t rI t  , (8) 

where γ is the recovery rate for SIRS models, Ti=1/γ. 

( ) 1 (1 )t     , (9) 

where ε∈[0,1] is a constant parameter, the vulnerability 

parameter is ψ(t) ∈[ε,1]. 

On the basis of the set of differential Equations (7-9), 

we propose our model to explore the role that awareness 

plays in the synchronization mainly by adding the effect of 

consensus as awareness to our epidemic model. For 

example, when a panic spreads, many individuals will 

decrease their contacts for the precaution, while their 

communication about the epidemic or rumor is keeping 

unblocked through Internet, telephone. 

 

3 Results and discussion 

 

Here we get the prevalence of epidemic and relevant order 

parameter by simulation over 100 time steps, to make sure 

that curve of the system is in a steady state. Meanwhile we 

assume the population size is N=2000, number of 

communities C=5, that means there 400 individuals in one 

community, and various Q to control the number of links 

intra- and inter- community. 

Figures 1-2 displays the effect of order parameter δ on 

infected proportion I(t) with fixed intra-community coup-

ling strength β and various inter-community coupling 

strength p. Overall, it is easy to find that with high degree 

of inter-community coupling strength, oscillation ampli-

tude and mean prevalence are suppressed. In Figure 2 the 

system converge to a weak oscillating. With high degree 

of inter-community strength p, global synchronization is 

reaching its peak region in a slower speed, which is a quite 

counterintuitive result. 

 
FIGURE 1 The change of (a) epidemic prevalence I(t) and (b) phase 
synchronized order parameter δ(t) with β0=0.2, λ=0.2, p=0.5, Q=0.80 

Ti=2, Tr=2 
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FIGURE 2 The change of (a) epidemic prevalence I(t) and (b) phase 

synchronized order parameter δ(t) with β0=0.2, λ=0.2, p=0.9, Q=0.80, 
Ti=2, Tr=2 

 

 

FIGURE 3 The change of (a) epidemic prevalence I(t) and (b) phase 

synchronized order parameter δ(t) with β0=0.2, λ=0.2 p=0.9, Q=065, 

Ti=2, Tr=2 
 

Results in Figure 3 show the epidemic prevalence and 

consensus on module network with same parameters with 

Figure 2 but community strength Q=0.65. The change law 

in Figure 3 clearly shown that, with the decreasing of Q, 

which means more links changing from intra-community 

edges to inter-community edges, the control effect induced 

by phase synchronization are taking more quickly. There 

only two peaks before the curve of I(t) hit the stable line. 

Combined with the results from Figure 2, a reasonable 

explain is as follows: lower Q means the connectivity of 

inter-community increased, high p means the coupling 

strength between a pair of communities increased. Note 

that in the situation of high p and high Q, where the strong 

coupling strength with poor connectivity between commu-

nities, and due to this, results in lower speed to achieve 

synchronization. 

To validate our results from above, we simulated the 

same change of Q and p in SIS models. With assuming the 

Tr=0, the periodic oscillations are fade out. The difference 

between the change law in Figures 4-6 shown the same 

rule as Figures 1-3. More links between modules, more 

quick the response speed. The epidemic prevalence is 

greatly affected by phase synchronization, the length of Tr 

and Ti, but community strength Q. The Strengthen of inter-

community coupling strength have great effect on the 

stable state of epidemic, and delayed the reaching of 

consensus. 
 

 
FIGURE 4 The change of (a) epidemic prevalence I(t) and (b) phase 

synchronized order parameter δ(t) with β0=0.2, λ=0.2, p=0.5, Q=0.80, 

Ti=2, Tr =0 

 
FIGURE 5 The change of (a) epidemic prevalence I(t) and (b) phase 

synchronized order parameter δ(t) with β0=0.2, λ=0.2, p=0.5, Q=0.65, 
Ti=2, Tr=0 
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FIGURE 6 The change of (a) epidemic prevalence I(t) and (b) phase 

synchronized order parameter δ(t) with β0=0.2, λ=0.2, p=0.9, Q=0.65, 
Ti=2, Tr=0 

 

4 Conclusions 

 

We have investigated the influence of the coupling 

strength of inter- and intra-community on global synchro-

nization induced by the Kuramoto model. These models 

can be argued to capture the social collective behavior 

better than the original module models, since time-varying 

inter-community coupling considered. Our models can be 

extended to discuss the effect of cluster coefficient on 

dynamics, because of the design of model are applicable to 

analyze the coefficient. High community strength Q with 

sparse links between modules, suppressed the spreading 

and phase synchronization procedure. Note that this results 

a fade out of phase synchronization even in high coupling 

strength. When a high inter-community coupling strength 

combined with low community strength Q, there is a clear 

decrease in spreading prevalence and an obvious speed 

advantage to hit the stable state. However, that also 

corresponds the most cost expensive scheme, because of 

the increase of edges and coupling between modules. From 

the results from our work, we can conclude that the scheme 

place extra emphasis on inter-community coupling 

strength has the cost advantage and the scheme place extra 

emphasis on inter-community connectivity has the speed 

advantage. 
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